Difference and Difference Quotient. Part IV
نویسندگان
چکیده
منابع مشابه
Difference and Difference Quotient. Part IV
The papers [2], [7], [13], [3], [1], [6], [9], [4], [14], [8], [5], [15], [11], [12], and [10] provide the notation and terminology for this paper. We adopt the following rules: n denotes an element of N, h, k, x, x0, x1, x2, x3 denote real numbers, and f , g denote functions from R into R. Next we state a number of propositions: (1) If x0 > 0 and x1 > 0, then loge x0 − loge x1 = loge( x1 ). (2...
متن کاملDifference and Difference Quotient. Part II
The articles [8], [1], [4], [2], [3], [5], [7], [12], [13], [6], [9], and [10] provide the notation and terminology for this paper. We follow the rules: h, r, r1, r2, x0, x1, x2, x3, x4, x5, x, a, b, c, k denote real numbers and f , f1, f2 denote functions from R into R. Next we state a number of propositions: (1)1 ∆[f ](x, x+ h) = ( ~ ∆h[f ])(1)(x) h . (2) If h 6= 0, then ∆[f ](x, x+ h, x+ 2 ·...
متن کاملDifference and Difference Quotient. Part III
(3) (δh[f ])(x) = (∇h 2 [f ])(x)− (∇−h2 [f ])(x). (4) (~ ∆h[r f1 + f2])(n+ 1)(x) = r · (~ ∆h[f1])(n+ 1)(x) + (~ ∆h[f2])(n+ 1)(x). (5) (~ ∆h[f1 + r f2])(n+ 1)(x) = (~ ∆h[f1])(n+ 1)(x) + r · (~ ∆h[f2])(n+ 1)(x). (6) (~ ∆h[r1 f1 − r2 f2])(n+ 1)(x) = r1 · (~ ∆h[f1])(n+ 1)(x)− r2 · (~ ∆h[f2])(n+ 1)(x). (7) (~ ∆h[f ])(1) = ∆h[f ]. (8) (~ ∇h[r f1 + f2])(n+ 1)(x) = r · (~ ∇h[f1])(n+ 1)(x) + (~ ∇h[f2])(...
متن کاملFUZZY LOGISTIC DIFFERENCE EQUATION
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2011
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-011-0006-5